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TECHNICAL NOTE 3499

CALCULATION OF THE SUPERSONIC PRESSURE DISTRIBUTION
ON A SINGLE-CURVED TAPERED WING IN REGIONS
NOT INFLUENCED BY THE ROOT OR TIP

By Walter G. Vincenti and Newmen H. Fisher, Jr.
SUMMARY

The shock-expansion method for the calculation of the pressure dis~
tribution on eylindrical wings in supersonic flow is here extended to
tapered wings made up of single-curved (i.e., developable) surfaces. The
method applies in regions of the wing where (a) the component of velocity
normsl to the surface rulings is supersonic and (b) the flow is not influ-
enced by the presence of the root or tip. The calculation is carried out
by regarding the single-curved surface as the limit of an inscribed poly-
hedron whose edges coincide with rulings of the actual surface. The
changes of flow across an element consisting of an edge and subsequent
face of the polyhedron are then found from elementary considerations of
infinitesimal plane waves and simple geometry. The result, in the limit
of the curved surface, is & pair of simultaneous, nonlinear ordinary dif-
ferential equations for the components of Mach number normal and tangen-
tial to the surface rulings. These equations are readily integrated by
standard numerical methods in any given case. Calculations are carried
through in the present report for a biconvex triangular wing of aspect
ratio 4 at two values of the free-stream Mach number.

As usual, the small-disturbance assumptions can be used to provide
considerable simplification. In the linear case, in particular, a closed
expression is readily obtained for the pressure distribution on a wing of
biconvex section. For the calculated example, the relationship between
the linear and the shock-~expansion results is similar to that observed
in two-dimensional flow. In the hypersonic case it is found that the
pressure distribution can be calculated by disregarding the taper and
treating the streamwise section from a simple two-dimensional point of
view. Examination of two-dimensional shock-expansion results for the
calculated exsmple shows, in fact, that a strip approximation of this
kind provides good accuracy even at moderate supersonic Mach numbers.

INTRODUCTION

The present report is concerned with a type of inviscid supersonic
flow that occurs on tapered wings made up of single-curved surfaces. By
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"single-curved” it is meant that the surfaces are capable of being devel-
oped onto a plane. Such developable surfaces fall into three classes:
cylinders, cones, and convolutes, the last being the relatively uncommon
surface generated by a straight line moving tengent to a nonplanar curve
(see, e.g., refs. 1 and 2). The supersonic flow over an infinite cylinder,
yawed or unyawed, can be treated by the two-dimensional shock-expansion
method, first proposed by Epstein (ref. 3) and since discussed in numer-
ous books and papers (see, e.g., refs. I and 5). The extension of the
shock-expansion method to portions of wings made up of cones -~ or, if
desired, convolutes - is the subject of the present paper.

As in the usual two-dimensional case, it is required in the present
work that any shock wave associated with the leading edge of the wing be
attached and that the flow just downstream of the wave be supersonic nor~
mal to the edge. If these conditions are met, the method then applies in
those regions of the wing where (a) the component of velocity normsl to
the surface rulings is supersonic and (b) the flow is unaffected by the
presence of tips or junctures. Such regions, though seemingly rather
special, are of interest for two reasons. First, at the higher super-
sonic Mach numbers -~ say 3 and above - they may constitute a mejority of
the wing surface. Second, as will be seen below, the flow in these
regions is of a simple type vhich is amensble to a relatively precise
analysis. In particular, the flow quantities are (with a minor qualifi-
cation in the case of the convolute) constant along the surface rulings.

. The reasoning on vhich the foregoing statement is based 1s as fol-
lows: Consider that the surface of the wing is replaced by an inscribed
polyhedron whose edges coincide with rulings of the actual surface.® In
view of the single-curved nature of the surface, this can obviously be
done. If the conditions of the preceding paragreph are satisfied, the
flow at the leading edge of the wing will be characterized by an oblique
shock wave or a yawed Prandtl-Meyer expamnsion. In either case the flow
quentities will be constant on the face of the polyhedron adjoining the
leading edge. At subsequent edges of the polyhedron where the component
of velocity normal to the edge is supersonic, an expansion fan will orig-
inate. If one neglects the reflected effects that arise when these
expansion fane interact with a leading-edge shock wave,® the fans them-
selves will be of the yswed Prandtl-Meyer type. To this approximation,
therefore, the flow quantities will be constent on each face of the poly-
hedron. Now let the number of faces of the polyhedron increase indefi-
nitely. In the limit the polyhedron will become the single~-curved surface,
and the faces of the polyhedron will become the surface rulings. It fol-
lows that, if reflected effects are neglected, the flow quantities must

1Tt will be assumed throughout that the surface is convex to the flow
and free of sharp corners, though these restrictions are not essential.

2This approximation is also made in the two-dimensional case. The
resulting errors are discussed by Eggers, Syvertson, snd Kraus in refer-
ence 6. They eonclude that in two-dimensional flow the errors are small
except for conditions near shock detachment. There is no reason to expect
that the situation will be substantially different in the present case.
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be constant on each ruling. (In the case of the cone, where the shock
wave and reflected effects are themselves conical, the qualification in
this statement can be dropped, and the conclusion taken as exact. It

can, in fact, be arrived at directly from the familiar argument concern-
ing the lack of a characteristic length in the boundary-value problem in
the conical case. For the convolute an argument like the foregoing is
necessary, and the qualification must be retained. In the calculaticns
that follow, as distinct from the argument itself, the reflected disturb-
ances will always be ignored, and a quentitative approximation will remain
in either case.)

The method of calculation is arrived at by simple extension of the
foregoing ideas. To this end, we concentrate attention on an element of
the polyhedron consisting of one corner and the adjoining downstream face
and regard the angular deflection at the corner and the angular breadth
of the face as infinitesimal. Since reflected effects are neglected,
the expansion occurring at the corner ¢an now be regarded as taking place
through an infinitesimal plane wave (i.e., Mach wave) passing through the
corner. The accompanying changes in flow are readily calculated from the
fact that the vectorial change in velocity from one side of the wave to
the other must be normel to the wave. Across the face of the element -
that is, from one corner to the next - the only changes that need be con-
sidered are those associated with the change in relative orientation
between the velocity (vhich is constent on the face) and the corners
themselves. These changes, which affect the upstream conditions for the
wave at the next corner, are found from simple comsiderations of geometry.
Following this procedure, one obtains, in the limit of the curved surface,
a palr of simultaneous, nonlinear ordinary differential equations for the
components of Mach number normal and tangential to the surface rulings.
These equations are to be integrated from the leading edge rearward. The
Mach number components at the leading edge, which provide the initial
conditions for the integration, are found by applying the concepts of
gimple-sweep theory to the equations for an oblique shock wave or Prandtl-
Meyer expansion. The integration itself is readily accomplished by stand-
ard numericel means.

The first section of the paper 1s concerned mainly with the deriva-
tion of the differential equations and with the evaluation of certain
derivatives required for their application to conical surfaces. The
second section discusses the simplifications that occur when the usual
small-disturbance approximations are introduced, both in the linear super-
sonic range and at hypersonic speeds. Of particular interest here is the
result that at hypersonic speeds the method reduces to a simple strip
theory in the streamwise direction. In this section of the paper a closed
expression is also obtained for the pressure distribution on conical wings
of biconvex section in the linear case. The paper concludes with same
numerical results for a triangular wing made up of conical surfaces with
apex at the tip. A realization that the pressures on a portion of this
wing must be constant on rays through the tip was, in fact, the starting
point of the analysis.
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Although the present problem is a fairly obvious one, reference to
it in exdieting literature is difficult to find. The only paper the
authors have come upon, in faect, is that of Thomson and Sheppard (ref. 7),
which became availsble after the present analysis was complete. In this
reference, the surface of a conical wing is approximated by a polyhedron
and the pressure distribution on this approximating surface calculated
by application of simple-sweep theory and the Prandtl-Meyer relations at
each successive corner. The present plan of incorporating a limiting
process may be preferable with regard to accuracy and ease of computation.
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NOTATION
Primary Symbols

speed of sound
wing chord (measured at arbitrary spanwise station)
pressure coefficient (see eq. (30))

function defining shape of wing section

Mach number vector

megnitude of Mach number vector
static pressure

total pressure

radisl distance along surface ruling
thicknees of wing section

ebsolute temperature

magnitude of disturbance veloclity, V ~ Ve

veloeity vector

SFor the calculation of the entire nonlinesr flow field around a
general conical surface, reference should be made to the work of Maslen
(ref. 8). The same problem has also been discussed by Ferri at the Con-
ference on High Speed Aerodynamics, Polytechnic Institute of Brooklyn,
Janusry 20-22, 1955.
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V
3V

X,¥,z

o

oT

do
dw

aT
dw

?,w

magnitude of veloclty vector

increment in V

Cartesian coordinates

angle of attack measured in streamwise direction

angle of stteck measured in plane normal to leading edge
ratio of specific heats (7/5 for air)

deflection angle measured in plane normel to leading edge

local Cartesian coordinates in plane normael to surface ruling
(see sketch (d))

leading-edge angle measured in streamwise direction
leading~edge angle measured in plane normel to leading edge

Mach angle corresponding to component of velocity normal to sur-
face ruling -

angle between velocity vector and surface ruling (see sketch (a))

chordwise position aft of leading edge at arbitrary spanwise
station

infinitesimel angle between two edges of face of polyhedron
(see sketeh (b))

infinitesimal deflection angle at corner of polyhedron measured
in plene normel to corner (see sketch (b))

rate of rotation, at a given ruling, of the orthogonal projection
of a moving surface ruling onto a fixed tangent plane through
the given ruling

rate of rotation, at a given ruling, of & moving tangent.plane,
measured in s plsne normel to the ruling

angles used to specify position of rulings on conical surface
(see sketeh (c))

Subscripts

conditions in free stream
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* conditions at critical speed

) values at origin of {,} coordinate system (see sketch (d))

1 velues at leading edge

2 values at trailing edge

n component of velocity or Mach number normal to surface ruling
(see sketch (a))

t component of velocity or Mach number tangential to surface,ruiing
(see sketch (a))

c change across corner of polyhedron (see sketch (b))

F change across face of polyhedron (see sketch (b))

Supersecripts

()"  first derivative of function with respect to argument

( )" second derivative of function with respect to argument

SHOCK-EXPANSION METHOD

Differential Equations for Flow Over Single-Curved Surface

Since the flow along a solid boundary must be everywhere tangent to

>
the boundary, the velocity vector V at any point on a single-curved
surface will be completely defined if the magnitudes Vp and V{ of its
components normel and tangential to the surface ruling at that point are

known (sketch (a)). In the present case, where {I} is constant on each

ruling, Vh end Vy are given

by & pair of ordinary differ-
ential equations that can be

derived as follows:

As explained in the
introduction, we begin by
regarding the single-curved
surface as the limit of a
polyhedron vhose edges coin-~
clde with rulings of the
actual surface. Let us then
consider the flow over an
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infinitesimal element of the
polyhedron (sketch (b)) con-
slsting of a corner C and
the adjoining downstream

face F, The infinitesimal
deflection at the corner,
measured in a plane normel to
the corner, is denoted by

oT. The infinitesimal angle
between the two edges of the
face F 1is represented by
50, (The positive directions
of &7 and 8¢ are shown in
the sketch.) The changes in
Vn and Vi across the complete
element C plus F will be
considered as composed of the
changes across the corner C
followed by the changes across .
the face F. Sketech (b)

Under the conditions discussed in the introduction, the chenges across
the corner C will take place through a planar Mach wave originating at
the corner, Let V, Vpn, and V4 here denote the magnitudes of the veloc-
ity and its normal and tangential components upstream of the corner.
According to the properties of infinitesimal plene weaves, the angle between
the Mach wave and the upstream face of the corner is then given by

by = ten ——— (1)

where &a is the speed of sound corresponding to V. The situation down-
stream of the corner (see sketch (b)) is completely determined by (a) the

.9
property that the vectorial change in veloeity ©&Vg across the corner
must be normal to the wave and (b) the boundary condition that the result-

-

ent velocity V + 8?% downstream of the corner must be parallel to the
face F. From requirement (a) it follows at once that the change in Vy
across the corner is zero, that is,

BV, = 0 (2)

The corresponding change in Vp can be found by considering the triangle
> > > > >

formed by the vectors Vy, 8Vh0(56Vb), and Vpn + &Vp,. From this triangle,

whose geometry is dictated by requirements (a) and (b), it follows that
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3T
Vo + BV, sj‘“(é‘ * “n)

Vn sin-’é[--pn-ﬁ'l)

With the aid of equation (1), this can be written, to the first order in
Infinitesimal quantities,

8Vng = ———= 87 (3)

This is, of course, identical to the corresponding equation for two-
dimensional Prandtl-Meyer flow (cf. ref, 9) except for the appearance of
Vn vhere V would ordinarily be.

The changes in Vp and Vi across the face F are found from the
fact that the velocity vector is constant in magnitude and direction on

the face. If v 1is the angle between this vector and the surface ruling
(see sketch (a)), we have in general

Vp =V sin v

Vg =Vcos v

Differentiation of these expressions gives, for constent V,

avn

V cos v Qv = Vidv

(%)

dVy = -V sin v dv = -Vpdv

Since the direction of the velocity vector does not vary on ¥, the change
in v <from one edge to the other is due solely to the difference in ori-
entation of the edges. Application of equations (%) to the calculation
of the changes in Vn and Vi across F thus gives to the first order
(and with due regard for the positive direction of 8g)

8Vnp = -ViB0 (5)

Vip = (Vo + 8Vnc)80' 2 Vpdo (6)
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The changes in flow across the complete element C plus F can now
be found by combining equations (2) and (6), and (3) and (5). In this
manner we obtain, in the limit as the infinitesimal quantities tend to
zero, the following ordinary differential equations for the calculation
of the flow over a single-curved surface:

v s
dVp = ———=—— dr ~ V4do (72)
2
Vn
/——— -1
a2
dvy = Vpdo (T0)

For computational work it is convenient to rewrite the above equa-
tions in dimensionless form in terms of the normal and tangential Mach
numbers M, and My, where My = Vp/a and My = V¢/a.* To do this the
defining expressions for Mh and M; are first differentiated to obtain

av; da
aMy = "'aE - My (8a)
avy da
Ay (8v)

The speed of sound a 1is known to be related to the Mach number by the
adisbatic energy equation, which cen be written (cf. ref. 10, eq. (32b))

2 -1
a 7 +1 y -1
a—*'> = > [l+ > (Mn_2+Mt2>]

where ay 1is the constant critical speed. Differentiation of this rela-
tion gives

da y -1 MndMn + MpdMy

a=" 2 7-1(M,12+Mt2)
2

1+

4The analysis could be simplified at this point by making the speeds
dimensionless through division by the constant critical speed ayx instead
of by the variable speed of sound a. This leads, however, to slightly
increased laebor in the eventual numerical work.
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The desired differential equations are now found by substituting this
expression and equations (7) into equations (8) and solving for daM,

and dMy. This gives finally

Mn<l L1t Mf)
2
- 1

My = J—E_— ar - Mgdo (92)
My
a, = 7 -1 Mt aT + Mpdo (9p)

The differential equations (9) provide a means for calculating the
Mach number (end hence the pressure) distribution on a single-curved sur-
face under the conditions outlined in the introduction. To integrate the
equations for a given surface, the differentials dr and do must be
revritten in the form 4t = (d1/3A)dA and do = (do/dA)dA, where A is
any independent variable by which the position of the surface rulings can
be conveniently defined. In the light of the limiting process, the deriv-
atives dt/dA and dg/dA can be given simple geometrical interpretations
in terms of the rulings and tangent planes of the curved surface. The
derivative dt/dA at a given ruling cen be identified as the rate of
rotation of a moving tangent plene, evaluated at the ruling in question
and measured in a plene normal to the ruling. The derivative dc/d.A is
the corresponding rate of rotation of the orthogonal projection of a mov-
ing surface ruling onto the (fixed) tangent plane through the given ruling.
Expressions for these derivatives for a general conical surface are given
(for a suitable choice of A) in the next section of the paper. The actual
integration can be carried out by any one of a number of standard, step-
by-step numerical procedures, depending on the accuracy required (see,
e.g., refs. 11 and 12). Obviously, the integration breeks down when

My S 1.

It is important to note that the following sign conventions are
implicit in the derivation of equations (9): (a) My is positive when

ﬁn is in the direction of positive do (see sketch (b)); (b) My is

positive when ﬁ is directed away from the intersection of the surface
rulings. These conventions must be caerefully observed in carrying out
the numerical integration.

Equations (9) are, of course, applicable to the swept cylinder as
well as the cone and the convolute. In this case do is identically
zero, and Mp becomes independent of M; (see eq. (92)). This is as it
should be according to the concepts of simple-sweep theory (ref. 13).
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For such a problem, however, the methods of the present paper are super-
fluous, since a solution is readily found from tebular results for two-
dimensional flow (see, e.g., ref. 1h).

Application to Concial Surfaces

In the following section equations (9) will be specialized to a con-
ical surface, since this is the case most commonly encountered in prac-
tice, TFor such a surface, the position of the rulings - and hence the
shape of the cone - can be specified by an equation of the form

? = (w) (10)

|

where and'w &are as indicated in
sketch (c)., Here x, y, and z are
Cartesian coordinates fixed in the

wing, with origin O at the apex of
the cone.’ The x,z plene is taken
as the chord plane of the wing. The
velocity of the undisturbed stream is
assumed parallel to the x,y plane,
With ®w as the independent variable
(replacing A of the preceding sec-
tion), equations (9) can be written

4

Sketch (c)
7 -1 2
_Mn(l+ 5 M’“)d_-r aa|, (112)
d-Mn_ 2 d(:.)_:Mtd(x)w 8
My™ -1
y -1
2 anMde do

M, —|dw (11p)

5This apex may be located at either the tip or forwardmost point of
the wing. In the case of a wing with a truncated tip, the apex may be
virtual rather than actual.
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The task now is the purely geometrical one of expressing d'r/dw and do/dw
in terms of the known function ¢(w).

To do this let us consider a representative surface ruling at wgy, Qo.
At & point o located a radial distance ro along this ruling (see
sketch (d)), we establish a rectangulasr coordinate system £,7 in a

Sketch (d)

plane normal to the ruling. The § direction is teken parallel to the
X,z plane with € positive in the direction of increasing w; 7 is
positive in the direction of increasing ¢@. The trace of the coniecal
surface in the {,7 plene is then given by an equation of the form

1 = n(¢)

Expressions for T and ¢ are now needed for differentiation. Recall-
ing the geometrical interpretation of the derivative of T following
equations (9), we can write (with due regard for the positive direction
of &T as shown in sketch (b))

T = ta.n"(%)o - ta.n"(g-g- (12)
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vhere the subscript o denotes evaluation at the point o. To write an
expression for o, we consider an arbitrary point a on the trace of the
conical surface. Let the point b be the orthogonal projection of a
onto the trace (in the ¢&,7 plane) of the teangent plasne to the conical
surface at the ruling o00. In the light of the previous interpretation
of the derivative of o, we can then write

t. -1 9
g = tan To

An expression for ob can be obtained by considering the planar figure
obac, where c¢ 1is the orthogonal projection of a onto the { axis.
Since ©o¢ = { and ac = 1, we have

4 a £ + n(%%)
ob =t cos[tan-1<52>o] + 1 sin[ian‘1<ég 0] - o2
@,

The expression for o can thus be written

o = tan" - (13)

Expressions (12) and (13) must now be differentiated with respect to
w, and the derivatives evaluated at the point o. Since 7 and { will
be expressed subsequently as functions of w, the resulting expressions
will be put in terms of derivatives with respect to this quantity. We

thus obtain
agy (%) _ (4q (i"ﬁ
aT dw fo) d.wz fo) dw fo) d(ﬂa fo)

@)

dw (lka)
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(%E)o ) rl—o / (‘% : * (%2;): | (1)

Expressions for § and 1 as functions of ® cen be found by return-
ing to sketch (d). The points e, ¥, and g are first established as the
orthogonel projections of o, c, and & onto the x,z plane. The point
d d1is then established on the line ag by drawing cd parsllel Yo fg.
From_the geometry of the resulting figure, it is apparent that ef = o¢ =
and fg = cd = &c sin Qg = 7 sin Qo. We can therefore write, from consid-
eration of the quadrilateral efgO,

ef ¢
tan(w -~ wp) = ———— = (15
( e0 - fg ToCO8 Qg ~ 1 sin Qg ( )

and

e

Pl
ue

sin(w - W) = == = . (16)

B
3

An expression for g0 is found by observation of the triangle gaO.
Since ad = ac€ cos P, = 1 cos Py and 4g = cf = oe = rosin @,, it follows
that

dg + ad rTgsin Qg + 7 cos Qg

= — 1
tan @ = , = (17)
and hence by combination with equation (16) that
sin(w - wo) _ £ (18)

tan @ rosin @, + 1 cos @,

BEquations (15) and (18) constitute a pair of simultaneous equations for
§ end . Solution of these equations gives

E =< sia(u - uo) (198)

© cos Pocos(w - w,) + sin @ tan @
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tan - tan cos(w -~
q = To q) (Po ( (1)0) (19.b)
cos(w - wo) + tan Qgtan @

Since the relation (10) will be known in any given case, these equations
give € and 1 . as functions of w.

Equations (19) must now be differentiated to find the quentities
required in equations (1l4). This operation gives finally

a
<}£> = roco8 Pg
dw/q
dn t
Eé)o = T'oPo
a=¢
&), = otesn oo

az .
(éag)o = ry(sin @ cos 9, + @,'")

vhere the primes denote differentiation of @ with respect to its argu-

ment. Substitution of these expressions into equations (14) gives, after
the subscripts are dropped, the following relations for the required geo-
metrical derivatives:

dr _ sin @ cos®p + ¢@''cos @ + 2p*®sin @ (20a)

ar
dw cosZp + @'Z

= JeosZp + '3 (20b)

ele
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With the aid of equations (20), the differential equations (11) can be
integrated numerically for any conicel wing for which ¢ 1is given as a
function of .8

On most conical wings encountered in practice, the apex of the cone
will be located at the wing tip. In this case the contour of the surface
is usually defined by specifying the shape of the streamwise airfoil sec-
tion ~ that is, by an equation of the form

1)

wvhere c¢ is the chord of the wing at some arbitrary spanwise station =z,

& is the chordwise distance aft from the leading edge at that station,

t/c is the thickness ratio of the airfoil section, and f is some given
function of g/c. In an epplication of this type, it is advantageous to
replace dw in equations (11) by [dw/d(t/c)]d(t/c) end integrate directly
with respect to g/c. The necessary expression for duw/d(&/c) can be found
by reference to sketch (e). If w; and wp are the values of w corre-
sponding to the leading end trailing edges

. //’ of the wing, it follows from the sketch
le u’ that
2 - // [e
3 ° - = > (222)
809> E=%Tam o, T w
¢ ! $
i—l ng l l .b)
& = -
c E 4§§ ¢ Z(;an w; tan w (22
|
J
L Elimination of 2z between these equations
and solution for ten w gives
Sketch (e)
tan Wy
tan w = (23)
|3 tan w,
1-2 -—
c tan wo

©Dr. Stephen H. Maslen of the NACA Lewis Laboratory has pointed out
to the authors that equations (11) and (20) can also be derived from the
general differential equations for conical flow as given in reference 8.
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from which it follows that

dw sin®w (; tan w;
d(g/c) tan w, " ten m;) (ek)

TPo £ind ¢ as a function of ¢/c, reference is made to sketch (c). This
gives

which becomes, with the aid of equations (21) and (22b),

ten @ = - SR ® (1 - Sen g f(%—) (25)

c tan w; tan wp

Equations (20), (23), (24), and (25) provide the relations necessary to
integrate equations (11) as functions of ¢/ec.

Initial Conditions

The initial conditions for the integration of equations (9) or (11)
are the values of the Mach number components at the leading edge. These
values, denoted by Mp, and
Mg, , are found by applying
the concepts of simple-sweep
theory (ref. 13) to the
locally cylindrical flow at
the edge.

k

The situation is as
shovn in-sketch (£).7 The
given quantities are the
magnitude M, of the free- 2
stream Mach number, the angle
of attack a, the angular
location w; of the leading
edge, and the leading-edge
angle A\ measured parallel
to the x,y plane. To

Sketch(f)

TPo understand this sketch it should be recalled that the vector
Mm is parallel to the x,y plane.

e e e e e e ——— . ———— ——— -
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apply simple-sweep theory, one must know the magnitudes Mp  and Mg, of
the components of free-stream Mach number normal and tangential to the
leading edge together with the deflection angle ©®, measured in a plane
normal to the edge. As can be seen ¥rom the figure, the Mach number
components are given by

Mg = Mocos a cos(xn - w;)

-Mcos o cos wy (262)

and

Ju2 - mg 2

MeoN1l - cos2q cosw, (26b)

£

The deflection angle (taken as positive when the deflection causes a com-
pression) is given by

% = M\n - an (27)

vhere A, and an are the leading-edge angle and the angle of attack, both
measured in a plane normal to the edge. These angles are related to the
given angles by the following equations (readily derived on the basis of
the sketch):

an

sin w,) (282)

,<tan 7;) (28b)

With Mp, and 8, Imown, the value of Mp, is easily found from the
well-known results for an oblique shock wave (5n > O) or Prandtl-Meyer
expansion (8, < 0). (See, e.g., refs. 5, 10, or 15.) As required by
simple-sweep theory, the calculations are carried out in the same manner
as for two-dimensionsl flow (see ref. 15), except that "normal™ quantities
are used in place of the usual resultant values. The value of Mg, is
found from the fact, given by simple-sweep theory, that V¢ at the lead-
ing edge is the same as in the free stream, that is,

An
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Vg, = Vg,
Division of this equation by the speed of sound a; gives

Vb, Ve Vi 8

a3 a3 80 a3
or finally

Mt oo Mo

i (21/8) i NT1/To

Mg, " (29)

The value of Mg, is given by equation (26a). The value of a;/a, or
T,/Tw is found from two-dimensional theory as before (see ref. 15).

As a general remark, it may be noted that the angle of attack enters
the entire scheme of calculation only through its influence on the initial
conditions. The differential equations (9) and (11), and the derivatives
that appear therein, are all independent of «.

Pressure Coefficient

The value of the local pressure coefficient

is easily found once the distributions of M, and Mt are known. To find
p/p,, - and hence Cp - we distinguish two cases as follows:

dn < 0.~ In this case there is an expansion at the leading edge and

the flow is isentropic. The total pressure is therefore everywhere the
same, and wWe can wWrite :

o _ (p/py)

= (31)
Po  (P/Pt)o
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The values of (p/p:), and (p/p) are found from the usual compressible-
flow tebles (e.g., ref. 10) as functions of M, and M, Where

M= JMp® + M2,

8y > 0.- In this case, because of the increase in entropy through

‘the leading-edge shock, it cannot be said that p; = Py - We cen, however,
write that py = Py, and hence that @

p _(pi/p.) /2
Po  (/P6); <7PZ) (32)

The values of (p/py), and (p/p;) can be obtained from the compressible-

flow tables as functions of the corresponding Mach number. The value of
(p,/p,) is found, as before, from an oblique-shock calculation based on

the flow normal to the leading edge.

SMALT.-DISTURBANCE APPROXIMATION

It is of interest to examine the form the analysis takes when the
small-disturbance approximgtions are introduced. To this end we define
a disturbance speed v according to the relation

V=Vps+7Vv (33)

and assume that terms of higher than the first order in v/V, can be
neglected. Consistent with this approach, we also assume that the wing
surface y = y(x,z) lies sufficiently close to the x,2 plene that only
first-order terms in y and its derivatives need be retained.

General Small-Disturbance Equation

To incorporate the foregoing assumptions into the analysis, we return
to the differential equations (7) and rewrite them in terms of the result-
ant velocity V. This is done by means of the relation

V2 = Vp2 + W2

which becomes after differentiation
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Vav = Vo dVp + Vi dVg

By substitution of the expressions for dV, and dVy from equations (7),
the following differential equation for V is obtained:

av Vo2
2 [0
'} > 1

The speed of sound & 1is related to V by the adisbatic energy equation,
which can be written

a2 = awz{ - -7—-;—]—' Mmal:(%)z - 1]} (35)

Now let us simplify equation (34) in the light of the previous assump-
tions. To begin, it can be shown that to a first order in small quanti-

ties
1
d-r=-sinwd<%¥>

Here w again denotes the azimuthal angle of the surface ruling (cf.
sketech (c)) » though the considerations are not now restricted to a cone.
To the same accuracy, the normal velocity Vp can be written

Vp = V8in w + (terms of first order)

where ‘the form of the first-order terms is immaterial for present purposes.
To the first order in v/Vw, equation (35) also simplifies to

a® = aof[l - (7 - M “ﬂ

If these three expressions are substituted into equation (3%) and the
assumption is made that Mgsin w >> 1 (i.e., the component of free-stream
Mach number normal to the rulings is not near 1), one then obtains to the
first order
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d(l’;) - sin © a(%) (36)

[ Mmzsinzm -1
j - (7 - DMe® -

This equation is general in the sense that it contains both the linearized-
supersonic and hypersonic approximations. These two approximetions will
now be discussed separately.

Linear Approximation

If M, is not too large, we can write that (7 - 1)Me2 o << 1, and

equation (36) simplifies immediately to Voo

d@{;) = 2o d(%}) | (37)

Jﬁwesinaw -1

This result is linear in that the distributions of v/Vw over two single-
curved surfaces of identical plen form - say yi(x,z) and yao(x,z) - will
upon being added equel the distribution of v/V, over a third surface
ys(x,2z) where yg =y + y2. It is easily verified that equation (37)
conforms to the similarity rules of linearized supersonic wing theory.
Any velocity distribution calculated by means of this equation must, in
fact, be identical to that which would be obtained by solution of the par-
tial differential equation of linear theory under the same boundary con-
ditions. This follows from the fact that the only phenomene specifically
neglected in the present development - that is, the disturbances reflected
from a leading-edge shock wave - disappear in the conventional linear
development as well. Equastion (37) will be integrated for a specific
type of wing (i.e., for a specific relation between Jy/dx and w) follow-
ing a discussion of the hypersonic approximation.

Hypersonic Approximation

When M, 1s very large, it can no longer be said that
(7 - 1M 2 o4 <« 1. In this case , however, the first term under the radi-

V
cal in equa:bt:fon (36) will predominste » and the equation can be reduced to
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Mwa(%‘) .= - d(%:l) (38)

/1 - (7 - 1)Mw2;,‘f;

The dependence on w thus dlsappears from the differential equation.
Equation (38) is, in fact, the same equation one obtains if the hyper-
sonic small-disturbance spproximation is applied to the differential equa-
tion for two-dimensional Prandtl-Meyer flow.8 The same situation can be
shown to exist with regard to the calculation of the initial conditions
and the pressure coefficient - that is, the equations are independent of
w &and are the same as those obtained from the two-dimensional small-
disturbance theory of hypersonic flow. It thus appears that, for thin
wings at high Mach numbers, the pressure distribution can be found by
disregerding the taper and treating the wing section from a simple two-
dimensional point of view. This result is in agreement with the ideas
expressed by Eggers in reference 16, It is a consequence, of course, of
the fact that when the surface Mach number is everywhere large, as will
be the case on a thin wing at a large free-stream Mach number, the region
of dependence of a given point on the wing surface is of negligible extent
in the spenwise direction.

Since w does not appear in equation (38), the integration can be
carried out at once. This will not be done here, since the results can
be shown to agree with the equations faor thin two-dimensional airfoils
at hypersonic speeds as worked out completely by Linnell (ref. 17). These
equations are arrived &t by Linnell by making suitable approximetions in
the usual two-dimensional shock-expension reletions. According to present
consideretions, these approximate two-dimensional results may be applied
directly to the streamwise sections of sufficiently thin tapered wings.
For engineering applications to thicker wings, one might go a step farther
and apply the complete shock-expansion method in the seme manner. This
latter possibility will be examined in the subsequent example.

Application of Linear Approximation
to Conical Biconvex Wing
The linear approximation (37) will now be applied 4o a conical wing

with apex of the cone located at the wing tip. For such a wing the sur-
face 1s given by equation (21) as

8T+ can be shown that equation (38) conforms to the hypersonic simi-
laerity rules.
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y_=t f<£>
C C C

This can be differentiated to obtain

dy _3(y/e) _dy/e) _t _ (&
3" 5oy 3079 "5 7 ()

and

() -t -20 antrs

where the primes denote differentiation of f with respect to its argu-
ment, Substitution of the last relation into equation (37) and insertion
of dw/d(t/c) from equation (24) then gives for the governing differential

equation
(Q () ta:a:u s £''(g/c) %

sin wM,2sinw - 1

ta.nz

Since in linearized wing theory the pressure coefficient is given by
Cp = -2v/Vy, one can also write

acp = 2() ten wy £71(&/c)

_ Yen wy sin wJMmzsinzw

If Cp, 1is the pressure coefficient on the upper. surface at the leading
edge, it follows that the value of Cp at any other point on the same
surface is given by

s [

W1 sin w M 28inw - 1
tan wo
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The value of Cp , cen be found by applying simple-sweep concepts to the
known results for lineerized two-dimensional flow., This gives

2 pin w;y t
- * £'(0) - (0)
N S E g

On a wing of biconvex section, £''(&/c) is constant. (This is exactly

true if the section is made up of parabolic arcs and true to the accuracy
of small-disturbance theory if it is made up of circular arcs.) Equa-
tion (39) can then be written

78\ £''% ® a
cp = op, +2(3) e =
1 - ——2 YW; gin w\M2sinw - 1

tan ws

The integral in this equation can be put into a standard form by means of
the substitution p = sin%w. In this manner one obtains finally the fol-
lowing equation for the pressure coefficient on a conically tapered wing
of biconvex section:

. (t/c)f;'tan W | oea (M2 + 1)sinZw - 2 )
8a Y (M2 - 1)sin®w

Cp = Cp,

1 -

tan wp

_1 (M2 + 1)sin®w; - 2
(My® - 1)sinwy

sin (h1)

The value of CPl is given by equation (40); w is related to the more
common varisble £/c by equation (23). Equation (¥1) could be obtained,

presumably, by the conventional methods of linearized conical-flow theory,

though the authors are not aware that this has been done.
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NUMERTICAL, EXAMPLE

Calculations have been carried out on the basis of the foregoing
methods for a sweptback triangular wing of aspect ratio 4 (sketeh (g)).
The surface of the wing is tapered
linearly from the root to the tip -
that is, each half of the wing is a
I ‘ cone with apex at the wing tip. With

Mo the origin of coordinates et the right-
hand tip, it follows that w; = 45°
and wpy = 90°. The wing section, which
| is symmetrical about the chord line,
45° is 5 percent thick with maximum thick-

ness at midchord. It is composed of
a circular arc from the leading edge
2~ — | Y to the midchord and a parsbolic arc
10 from the midchord to the trailing
X

edge. The trailing edge is blunt
with a thickness one-half the maximum

TP e @ nerore (ot sqr (o) | M)
. ;
“© - s (- @)l @ - T OO - 2Jf
for
0SgfeS2
ana

IORBNC;

for 1/2 S¢fc 1. For this profile f£''(&/c) is seen to have a discon-
tinuity at midchord.

The calculated values of Cp on the upper surface of the wing are
shown in figure 1. Results are given for angles of attack of 0°, *3°,
and +6° at free-stream Mach numbers of 3.36 and 2.46. In each case, curves
are shown as computed by the shock-expansion method of thls report
(egs. (11)), by the corresponding linear approximation (eq. (41)), and by
the ordinary (i.e. » two-dimensional) shock-expansion method for the stream-
wise section. The numerical integration of equations (11) was carried out
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in the present case by means of the simple "trapezoidal formula" (see,
e.g., ref. 11, pp. 24-25 or ref. 12, pp. 236-238). Values given by this
method with ten equal increments of ¢/c were amply accurate compared
with results obteined by more refined methods of integration. The curves
from the two-dimensional shock-expension method are included in the figure
for the reasons mentioned in the discussion of the hypersonic approxima-
tion. Sketches indicating the approximate regions of applicebility of the
results are shown for each Mach number. These regions, as approximated
on the basis of the free-stream Mach angle, constitute 69 and 56 percent
of the plan-form ares at the respéctive Mach numbers of 3.36 and 2.46.
More accurate determination of the reglions as functions of M, and «
could, of course, be made on the basis of the results obtalned in the
pressure calculations themselves (cf. ref. 7). The value of o at which
Mp 'becoxges sonic just behind the leading-edge wave is -15.2° at M, = 3.36
and -6.9° at M, = 2,46,

The relationship observed in the present case between the shock-
expansion results (solid curve) and the corresponding linear approximation
(dashed curve) is much the same as that known for two-dimensional flow
(cf. ref. 4, fig. E,3i). As in the latter case, the shock-expansion val-
ues of Cp are, with minor exceptions, more positive than the linear
values by an amount which increases as the absolute value of
increases. As a consequence, the normal force on the wing at a given |a]
(as indicated by the vertical distance between the Cp curves at equal
t0) 18 concentrated more toward the leading edge in the shock-expansion
results. This effect would, of course, be less pronounced for wings of
smaller thickness ratio.

Judged on the basis of the present shock-expansion findings, the
curves obtained by the two-dimensional method are & good approximation at
the positive angles of attack shown in figure 1. As the angle becomes
negative, however, the spproximation becomes progressively less accurate.
This is due primarily to the error involved in the calculation of the dis-
continuous flow changes at the swept leading edge, an error which becomes
larger as the absolute value of the deflection at the leading edge
inereases. On the present wing, this deflection is zero on the upper sur-
face at o = 6°. The two-dimensional approximation would be expected to
deteriorate agalin at positive angles greater then this value. This behav-
ior is, of course, dependent on the amount of sweep at the leading edge.
On a reversed triangular wing, for exsmple, where the leading edge is
unsvwept, the two-dimensional method would give accurate initial conditions
at all angles, and the over-all situation would undoubtedly be different.

The logical argument for the use of the two-dimensional method in the
present case rests, as has been seen, on the assumption that the free-
stream Mach number is very large. The method would therefore be expected
to diminish in accuracy as the Mach number is reduced. The results of
figure 1 show this effect. It may be noted, however, that even at a mod-
erate Mach number such as 3,36, the two-dimensional method provides remark-
ably good accuracy within the angle range studied here. This agrees with
previous results (e.g. , ref, 18) which show that other deductions based

U [ — ————
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on the hypersonic small-disturbance assumptions (as, e.g., the similarity
rules) can be applied with good accuracy at fairly low supersonic Mach
nunbers,

Ames Aeronautical Laboratory
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National Advisory Committee for Aeronautics
Moffett Field, Calif., April 8, 1955
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Figure 1l.- Chordwise pressure distribution on upper surface of
triangulaxr wing.




32

Pressure coefficient, Cp

NACA TN 3499

1M¢= 2.46
region of
applicability

Present shock-exp. method
Linear approximation
Two-dim. shock-exp. method

\\
'\\‘_ \
S~
N o~ \ a
‘\\::\
\\\\ S~ -6°
A
S ‘\‘
RSN,
~IT~
~ \s\ -~ 3o
0 e =
\s\~
B
-04 0°
\~\
\:\~
'~ \\\\~\
-~ -
-08 \\\\ \\\ \~\ o
* \‘\\ ~—— 3
~ ~— ~
~ - \'\5\
-.l2 \‘\\ 6°
\\\\\
-16
0 40 80 .80 100
érc
(b) My = 2.46

Figure 1.~ Concluded.
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